_Assay.crosstab#
missionbio.mosaic.assay._Assay.crosstab
- _Assay.crosstab(columns: Union[str, ndarray, DataFrame], index: Union[str, ndarray, DataFrame] = 'label', normalize: str = 'all') DataFrame #
Compute a simple cross-tabulation of two attributes.
Example
The following will compute the number of cells in each DNA clone and protein cluster.
>>> import missionbio.mosaic as ms >>> sample = ms.load_example_dataset("2 PBMC mix") >>> sample.dna.crosstab(sample.protein.get_labels())
- Parameters:
- columnsUnion[str, np.ndarray, pd.DataFrame]
Name of the row attribute or array of values to be used as columns. Uses
get_attribute()
constrained by row to retrieve the values.- indexUnion[str, np.ndarray, pd.DataFrame], default
LABEL
Name of the row attribute or array of values to be used as index. Uses
get_attribute()
constrained by row to retrieve the values.- normalizebool, {‘all’, ‘index’, ‘columns’}, default: “all”
Normalize by dividing all values by the sum of values.
‘all’ : normalize all values.
‘index’ : normalize by the sum of values in the index.
‘columns’ : normalize by the sum of values in the columns.
‘off’ : no normalization.
- Returns:
- pd.DataFrame
A normalized cross-tabulation of two factors. It is an extension of
pandas.crosstab()
function for easy use with Mosaic.
- Raises:
- ValueError
If the length of columns is not equal to the length of index.
- If the length of columns or index is greater than the number of cells
when columns or index is a string.