_Assay.run_pca
_Assay.run_pca#
- _Assay.run_pca(attribute: Union[str, numpy.ndarray], components: int, output_label: str = 'pca', show_plot: bool = False, **kwargs: Any) None #
Principal component analysis
Adds output_label to the row attributes.
- Parameters
- attributeUnion[str, np.ndarray]
The attribute to be used for PCA. Uses
_Assay.get_attribute()
to retrieve the values constrained by row.- componentsint
The number of PCA components to reduce to.
- output_labelstr, default PCA_LABEL
The name of the row attribute to store the data in.
- show_plotbool
Show the plot for the explained variance by the PCAs.
- kwargsdict
Passed to the PCA.
- Raises
- ValueError
When both layer and attribute are provided. Only one is permitted at a time.