_Assay¶
- 
class 
missionbio.mosaic.assay._Assay(*args, **kwargs)¶ Abstract class for all assays
Each of
missionbio.mosaic.dna.Dna,missionbio.mosaic.cnv.Cnv, andmissionbio.mosaic.protein.Proteinare inherited from this base class, hence all of them have the following functionality:_Assay objects can be filtered using Python’s slice notation. It requires two keys (barcodes, ids). Both could be a list of positions, a Boolean list, or a list of the respective values.
Load the sample.
>>> import missionbio.mosaic.io as mio >>> sample = mio.load('/path/to/h5')
Select the first 250 cells (these aren’t necessarily the cells with the highest reads, they’re arbitrary cells) and the dna variants obtained from filtering.
>>> select_bars = sample.dna.barcodes()[: 250] >>> select_vars = sample.dna.filter_variants()
Slice the dna assay for the selected cells and variants.
>>> filtered_dna = sample.dna[select_bars, select_vars]
Note: This example is for DNA, but the same can be done for any _Assay object.
Modifying data
add_layer(name, array)Add layer to the assay
add_row_attr(name, value)Add row attribute to the assay
add_col_attr(name, value)Add column attribute to the assay
add_metadata(name, value)Add metadata to the assay
del_layer(key)Delete a layer from the assay layers.
del_row_attr(key)Delete an attribute from the row_attrs.
del_col_attr(key)Delete an attribute from the col_attrs.
del_metadata(key)Delete an attribute from the metadata.
Selecting data
barcodes([label])Get the list of barcodes.
clustered_barcodes([orderby, splitby, override])Hierarchical clustering of barcodes.
ids()Get the list of ids.
clustered_ids(orderby[, features, override])Hierarchical clustering of ids.
drop(values[, value_type])Drops the given values from the assay.
Get the label color palette.
set_palette([palette])Set the label color palette.
get_labels([barcodes])Get the labels corresponding to the barcodes.
set_labels(clusters[, others_label])Set the labels for the barcodes.
Custom clustering from scatter plots.
rename_labels(label_map)Change the name of the labels.
get_attribute(attribute[, features, constraint])Retrieve any attribute in the assay
Tertiary analysis methods
scale_data(layer[, output_label])Z-score normalization
run_pca(attribute, components[, …])Principal component analysis
run_umap(attribute[, output_label])Perform UMAP on the given data.
run_lda(layer, attribute, output_label[, cycles])Perform LDA on a row attribute using a layer to type clusters.
cluster(attribute[, method])Identify clusters of cells.
group_clusters(attribute)Relabel clusters based on expression.
Visualizations
scatterplot(attribute[, colorby, features, …])Scatter plot for all barcodes.
heatmap(attribute[, splitby, features, …])Heatmap of all barcodes and ids.
violinplot(attribute[, splitby, features, title])Violin plot for all barcodes.
ridgeplot(attribute[, splitby, features, title])Ridge plot for all barcodes.
stripplot(attribute[, colorby, features, title])Strip plot for all barcodes.
read_distribution([title])Rank-ordered barcodes vs total reads.
feature_scatter(layer, ids, **kwargs)Plot for given data across 2 ids.
fishplot([sample_order, label_order])Draws a fish plot
barplot([sample_order, label_order, percentage])Draws a bar plot of label counts for each sample
Statistics
feature_signature(layer[, exclude_missing])T-Test on given data.